Solar system Body	Approximate Mass (kg)	Diameter $(\mathbf{k m})$	Distance from the planet (km)	Orbital speed $(\mathbf{k m} / \mathbf{s e c})$	Orbital Period (days)
Jupiter	$189,000 \times 10^{22}$	142,984			
Earth	597×10^{22}	12,756			
Io	9×10^{22}	3643	421,600	17	About 2 days
Moon	7×10^{22}	3475	384,400	1	About 27 days

Use the table above to answer the following questions

1) Which has more mass - Earth or Jupiter?
2) Comparing Jupiter's moon "Io" with Earth's Moon - how are they alike?
3) Comparing Jupiter's moon "Io" with Earth's Moon - how are they different?
4) Comparing Io and the Moon, which planetary satellite travels faster (has a greater orbital speed)?
5) Given the results from this inquiry, why do you think that one moon orbits faster than the other?
6) Orbital period is the time it takes a revolving object to orbit a central object. Which planetary satellite has a shorter orbital period?
7) Explain the relationship between orbital speed and orbital period.
